
www.runtimeverification.com

Company Overview

What We Do

blockchaindynamic analysis

formal design

formal analysis
framework

Runtime Verification Inc. applies runtime
verification-based techniques to improve the
safety, reliability, and correctness of software
systems for aerospace, automotive, and the
blockchain.

Story

The runtime verification term was coined by Professor Grigore Rosu
(UIUC) and his colleague Dr. Klaus Havelund (NASA) in three papers
they published in 2001 and 2002. The papers received the Most
Influential Paper award at the ACM/IEEE Automated Software
Engineering Conference in 2016, the Test of Time award at the
Runtime Verification Conference in 2018, and respectively the Best
Software Science Paper award at ETAPS 2002.

The company was founded in 2010.

Symbol

During runtime verification we prove that the specification and the
implementation are tightly connected, hence two rigidity points.

Specification Implementation

Rigidity Points

Executive Team

Patrick
MacKay
Chief Operating Officer

Grigore
Rosu
President and CEO

Ralph
Johnson
Program Management
Officer

Darko
Marinov
Chief Quality Officer

Our company is fueled by people. We are pioneers in the runtime verification
community, with hundreds of publications that shaped the field.

Main Offices

University of Illinois at Urbana-Champaign
Ranked #2 worldwide in Formal Methods

University of Bucharest
Ranked #1 University in Romania

http://csrankings.org/#/index?soft&log&world
https://www.topuniversities.com/where-to-study/europe/romania/guide

Partners & Customers

What is runtime verification?

A subfield of program analysis and verification – just
like static analysis – aimed at verifying computing
systems as they execute: with good scalability, rigor, and
no false alarms.

Runtime verification is different from
static analysis because: it executes
programs to analyze, observes execution
traces, builds models from the execution
trace, and analyzes the model.

Runtime Verification complements Static Analysis

RV-Match

RV-Match is a semantics based automatic debugger for
common and subtle C errors, and the most advanced and
precise semantics-based bug finding tool.

RV-Match gives you:
• an automatic debugger for subtle bugs other tools can't

find, with no false positives
• seamless integration with unit tests, build

infrastructure, and continuous integration
• a platform for analyzing programs, boosting standards

compliance and assurance

In a Toyota ITC benchmark evaluation, comparing
RV-Match with various static analysis solutions, our
product received the best score by finding more bugs
than the static analysis tools and achieving a perfect
false positive rate of zero false positives.

Toyota ITC
benchmark

Case study – Toyota ITC benchmark

NASA core Flight Executive (cFE) is a development
and run-time environment for enabling cross-platform
embedded systems.NASA core

Flight
Executive RV-Match detected:

• 15 undefined behaviors
• 1036 implementation-defined behaviors

Case study – NASA cFE

RV-Predict

RV-Predict automatically detect the rarest and most
difficult data races in your Java and C/C++ code, saving
on development and testing effort with the most precise
race finder available.

RV-Predict gives you:
• an automatic debugger for subtle Java and C/C++ data

races with no false positives
• seamless integration with unit tests, build

infrastructure, and continuous integration
• a maximal detection algorithm that finds more races

than any sound dynamic tool

RV-Predict/C and LLVM ThreadSanitizer both
detected a race on the Stolz queue. However, in
producing a report in 5-10 seconds, RV- Predict/C
bested ThreadSanitizer by a factor of 10 as the
latter took more than a minute to generate the
same report.

The Stolz
queue

Case study – Dynamic analysis

Smart Contract Verification

We formalize your smart contract as a mathematical
specification. We refine the specification to match
the target low-level virtual machine, and then compile
the smart contract from its high-level language (e.g.,
Solidity, Vyper, Plutus) to virtual machine bytecode.
We can then prove whether the bytecode satisfies the
refined specification.

Uniswap

Consensus Protocols

We developed formal models of Casper and Algorand,
and specified two classes of properties: safety (that
the protocol guarantees consensus) and liveness (that
the protocol will always continue to make progress).
The formal models make explicit the assumptions
under which these properties are satisfied, which is
extremely important for properly setting the
expectations from systems built on top of them.

Virtual Machines

In partnership with blockchain research firm, IOHK, we
designed and developed IELE, a new virtual machine
that represents an evolution of sorts of the Ethereum
virtual machine (EVM). It leverages the KEVM project,
which successfully demonstrated that a K formal
specification of EVM can generate automatically, a
"fast enough" virtual machine.

Tokens

For the larger Ethereum ecosystem we specified
ERC20-K and ERC777-K, the mathematically
rigorous formalization of the first of its kind ERC20
and increasingly popular ERC777 token standards.
These two industry first formalizations facilitate
formal verification of token implementations.

Partnerships

We always valued the friends and partners who have
contributed mightily to our success. Therefore, we are happy
to introduce the new commissions for the following services:

Customer Introduction by Partner – A qualified
introduction to a Runtime Verification executive, that
leads to a new completed engagement. (NET 5%)

Sales Made by Partner – An executed contract to a new
Runtime Verification customer. (NET 15%)

