
Grigore Rosu
Founder, President and CEO
Professor of Computer Science, University of Illinois

https://runtimeverification.com

https://runtimeverification.com/

 Runtime Verification
 Company

▪ Licensed by University of Illinois at Urbana-Champaign

 Scientific Field
▪ Co-pioneered with NASA colleagues and collaborators

 Products and Demos
 RV-Match

 RV-Predict

 RV-Monitor
 Conclusion

The Company

Runtime Verification, Inc. (RV): startup
company aimed at bringing the best ideas and
technology developed by the runtime verification
community to the real world as mature and
competitive products; licensed by the University
of Illinois at Urbana-Champaign (UIUC), USA.

Mission: To offer the best possible solutions for
reliable software development and analysis.

Ranked top 5 in USA (US News)
#1 in USA in Soft. Eng. (csrankings.org)
RV technology is licensed by UIUC
RV employees are former UIUC students

http://grad-schools.usnews.rankingsandreviews.com/best-graduate-schools/top-science-schools/computer-science-rankings
http://csrankings.org/

 Runtime verification is a new field aimed at
verifying computing systems as they execute

 Good scalability, rigorous, no false alarms

 We are leaders in the field

 Coined the term “runtime verification”

▪ As a NASA research scientist, back in 2001

 Founded the Runtime Verification conference (RV)

 100+ publications

 Raised $7M+ funding to develop technology

The Field

 Subfield of program analysis and verification
 So is static analysis (SA)

 SA and RV complement each other
 Main idea of RV is different from that of SA:

 Execute program to analyze
▪ Using instrumentation or in a special runtime environment

 Observe execution trace

 Build model from execution trace

 Analyze model

Steps above may be combined (e.g., online analysis)

Code Model

Extract Analyze
Bug 1
Bug2
…

Advantages:
+ good code coverage
+ early in development
+ mature field

Limitations:
- undecidable problem, so
- false positives/negatives or
- does not scale

Code

Model

Analyze
Bug 1
Bug2
…

Advantages:
+ precise (no false alarms)
+ good scalability and rigor
+ recovery possible

Limitations:
- code must be executable
- less code coverage

E
xe

cu
te

Event Trace Highly customized
for property of

interest

Highly customized
for property of

interest

 Code must be executable

 Use complementary, static analysis, earlier in process

 Use symbolic execution (RV-Match)

 Less code coverage

 Integrate RV tools with your existing testing
infrastructure: your unit tests should already provide
good code coverage; invoke RV tools on each test

 Systematic re-execution: cover new code each time

 Symbolic execution covers many inputs at once

The Products

RV-Monitor is a runtime monitoring tool that
allows for checking and enforcement of safety
properties over the execution of your software.
- Java (prototype), C/C++ (prototype)

RV-Match is a semantics-based automatic debugger
for common and subtle C errors, and an automatic
dynamic checker for all types of ISO C11 undefinedness.
- C (mature); Java and JavaScript (prototypes)

RV-Predict is an automatic dynamic data-race detector
for Java, which is sound (no false positives) and maximal
(no other sound dynamic tool can find more races).
- Java (mature), C/C++ with interrupts (prototype)

https://runtimeverification.com/
https://runtimeverification.com/

Big triangle: all
runtime behaviors
of your programOne path only;

0-100% overhead;
complex properties

Maximal number of
causally equivalent paths
predicted from one path;

1-102x overhead;
races, atomicity,

deadlocks

From one path to complete
coverage / verification; any

properties; may require user input

Semantics-based runtime verification

Code (6-int-overflow.c)

Conventional
compilers do not
detect problem RV-Match’s kcc tool precisely

detects and reports error, and
points to ISO C11 standard

…
Get to market faster, increase code portability,
and save on development and debugging with
the most advanced and precise semantics-
based bug finding tool. RV-Match gives you:
• an automatic debugger for subtle bugs

other tools can't find, with no false positives
• seamless integration with unit tests, build

infrastructure, and continuous integration
• a platform for analyzing programs, boosting

standards compliance and assurance

https://runtimeverification.com/match/1.0-SNAPSHOT/docs/benchmark/#running-rv-match-on-the-toyota-itc-benchmark

1. Execute program within precise mathematical model of ISO C11
2. Build abstract program state model during execution
3. Analyze each event, performing consistency checks on state

Code

Event Trace

Abstract State Model

Heap About 120
semantic state

components

Are all ISO C11
rules matched?
If “no” then error

A
n

al
yz

e

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

C, C++, Java, JavaScript, etc.

Test-case
generation

 To define programming languages formally,
we use the academic K tool and notation

 http://kframework.org

 Developed in the Formal Systems Laboratory (my
research group) at the University of Illinois

 Open source

http://kframework.org/

20

21

Syntax declared using annotated BNF

22

Configuration given as a nested cell structure.
Leaves can be sets, multisets, lists, maps, or syntax

23

Semantic rules given contextually

rule

<k> X = V => V …</k>

<env>… X |-> (_ => V) …</env>

Several large languages were recently defined in K:
 Java 1.4: by Bogdanas etal [POPL’15]

 800+ program test suite that covers the semantics

 JavaScript ES5: by Park etal [PLDI’15]

 Passes existing conformance test suite (2872 pgms)

 Found (confirmed) bugs in Chrome, IE, Firefox, Safari

 C11: Ellison etal [POPL’12, PLDI’15]

 It defines the ISO C11 standard

 Including all undefined behaviors

…
24

120 Cells!

Heap

… plus ~3000 rules …
25

 No need to re-implement tools as language changes
 Easy to customize tools

▪ E.g., embedded C for a specific micro-controller

 Programming languages continuously evolve (C90 C99
C11 …; or Java 1.4  Java 5 …  Java 8 …)

 Tools are correct by construction
 Tools are language-independent and can produce

correctness certificates based on language semantics only

 Language definitions are open-source and public
▪ Experts worldwide can “validate” them

▪ No developer “interpretation” of language meaning (e.g., C)

 Let’s use RV-Match with (extended) C11 semantics
 Goal: catch undefined behavior!

 You should always avoid undefined behavior in your code!!!

 Undefined behavior  lack of portability, security risks, non-determinism

 Wrapped RV-Match[C11] as an ICO C11 compliant drop-in
replacement of C compilers (e.g., gcc), called kcc

 Example: what does the following return?

4 with gcc
3 with clang (LLVM)
ISO C11: undefined!
kcc reports error

And, because of that, your code tested on
PC will not port on embedded platform,
will crush when you change compiler, and
will give you different results with even the
same compiler but different options …

{

 Go to https://runtimeverification.com/match to
download RV-Match (currently only C11 version
available); kcc and then execute the C programs
under examples/demo in the given order

 Most of the examples above are also discussed, with
detailed comments, at

https://runtimeverification.com/match/docs/runningexamples

 You can also run the Toyota ITC benchmark:
https://runtimeverification.com/match/docs/benchmark

https://runtimeverification.com/match
https://runtimeverification.com/match/docs/runningexamples
https://runtimeverification.com/match/docs/benchmark

 Evaluated RV-Match on the Toyota ITC benchmark, aimed at
quantitatively evaluating static analysis tools
 By Shin’ichi Shiraishi and collaborators

 ISSRE’14 original paper, compared six tools; paper disappeared (!)

 Press release by Grammatech, available at PRNewswire :

… report compares six
different static analysis

tools against benchmarks
in eight safety-related
categories of software

defect types: Static
Memory, Dynamic

Memory, Numerical,
Resource Management,

Pointer-Related,
Concurrency, …

http://www.prnewswire.com/news-releases/independent-study-names-codesonar-best-in-class-after-head-to-head-comparison-300035357.html

Shiraishi et al.,
ISSRE ’15

RV-Match GrammaTech
CodeSonar

MathWorks
Code Prover

MathWorks
Bug Finder

GCC Clang

DR FPR PM DR FPR PM DR FPR PM DR FPR PM DR FPR PM

Static memory 100 100 100 97 100 98 97 100 98 0 100 0 15 100 39

Dynamic memory 89 100 94 92 95 93 90 100 95 0 100 0 0 100 0

Stack-related 0 100 0 60 70 65 15 85 36 0 100 0 0 100 0

Numerical 48 100 69 55 99 74 41 100 64 12 100 35 11 100 33

Resource management 61 100 78 20 90 42 55 100 74 6 100 25 3 100 18
Pointer-related 52 96 71 69 93 80 69 100 83 9 100 30 13 100 36

Concurrency 70 77 73 0 100 0 0 100 0 0 100 0 0 100 0

Inappropriate code 46 99 67 1 97 10 28 94 51 2 100 13 0 100 0

Miscellaneous 69 100 83 83 100 91 69 100 83 11 100 34 11 100 34

AVERAGE (Unweighted) 59 97 76 53 94 71 52 98 71 4 100 20 6 100 24

AVERAGE (Weighted) 68 98 82 53 95 71 62 99 78 5 100 22 7 100 26

DR: Percent of programs with defects where defects are reported
FPR: Percent of programs without defects, with defects incorrectly reported; FPR = 100 - FPR

PM: Productivity metric: DR × (100 − FPR)

Shiraishi etal published revised version in ISSRE 2015
1276 programs; 3 static analysis tools compared

 Grammatech CodeSonar wins again (numbers below from ISSRE’15 paper)

? What you
get for free
What you

get for free

 We do not have semantics for “inappropriate code” yet
 We miss defects because inherent limited code coverage of RV

 No false positives for RV-Match!

Shiraishi et al.,
ISSRE ’15

RV-Match GrammaTech
CodeSonar

MathWorks
Code Prover

MathWorks
Bug Finder

GCC Clang

DR FPR PM DR FPR PM DR FPR PM DR FPR PM DR FPR PM DR FPR PM

Static memory 100 100 100 100 100 100 97 100 98 97 100 98 0 100 0 15 100 39

Dynamic memory 94 100 97 89 100 94 92 95 93 90 100 95 0 100 0 0 100 0

Stack-related 100 100 100 0 100 0 60 70 65 15 85 36 0 100 0 0 100 0

Numerical 96 100 98 48 100 69 55 99 74 41 100 64 12 100 35 11 100 33

Resource management 93 100 96 61 100 78 20 90 42 55 100 74 6 100 25 3 100 18
Pointer-related 98 100 99 52 96 71 69 93 80 69 100 83 9 100 30 13 100 36

Concurrency 67 100 82 70 77 73 0 100 0 0 100 0 0 100 0 0 100 0

Inappropriate code 0 100 0 46 99 67 1 97 10 28 94 51 2 100 13 0 100 0

Miscellaneous 63 100 79 69 100 83 83 100 91 69 100 83 11 100 34 11 100 34

AVERAGE (Unweighted) 79 100 89 59 97 76 53 94 71 52 98 71 4 100 20 6 100 24

AVERAGE (Weighted) 82 100 91 68 98 82 53 95 71 62 99 78 5 100 22 7 100 26

DR: Percent of programs with defects where defects are reported
FPR: Percent of programs without defects, with defects incorrectly reported; FPR = 100 - FPR

PM: Productivity metric: DR × (100 − FPR)

 We have also evaluated other free analysis tools on the Toyota ITC benchmark
 Numbers for other tools may be slightly off; they were not manually checked yet
 Clang cannot be run with UBSan, ASan and TSan together; we ran them separately

Shiraishi et al.,
ISSRE ’15

RV-Match Valgrind +
Helgrind (GCC)

UBSan + TSan +
MSan + ASan (Clang)

Frama-C (Value
Analysis Plugin)

Compcert
Interpreter

DR FPR PM DR FPR PM DR FPR PM DR FPR PM DR FPR PM

Static memory 100 100 100 9 100 30 79 100 89 82 96 89 97 82 89

Dynamic memory 94 100 97 80 95 87 16 95 39 79 27 46 29 80 48

Stack-related 100 100 100 70 80 75 95 75 84 45 65 54 35 70 49

Numerical 96 100 98 22 100 47 59 100 77 79 47 61 48 79 62

Resource management 93 100 96 57 100 76 47 96 67 63 46 54 32 83 52
Pointer-related 98 100 99 60 100 77 58 97 75 81 40 57 87 73 80

Concurrency 67 100 82 72 79 76 67 72 70 7 100 26 58 42 49

Inappropriate code 0 100 0 2 100 13 0 100 0 33 63 45 17 83 38

Miscellaneous 63 100 79 29 100 53 37 100 61 83 49 63 63 71 67

AVERAGE (Unweighted) 79 100 89 44 95 65 51 93 69 61 59 60 52 74 62

AVERAGE (Weighted) 82 100 91 42 97 65 47 95 67 66 55 60 51 76 63

DR: Percent of programs with defects where defects are reported
FPR: Percent of programs without defects, with defects incorrectly reported; FPR = 100 - FPR

PM: Productivity metric: DR × (100 − FPR)

 We had a tutorial at ETAPS’16 Congress. We heard
colleagues at ETAPS’16 complaining that some of the
correct SV-Comp benchmark programs are undefined

 SV-Comp = benchmark for evaluating C program verifiers

 Annual competition of program verification

 So we run the correct SV-Comp programs with kcc
 Unexpected results

 Out of 1346 “correct programs”, 188 (14%) were undefined,
that is, wrong! So most program verifiers these days prove
wrong programs correct. Think about it …

34

…
~200 different error reports

Predicting Concurrency Errors from Correct Executions without false alarms

T E S T S

Results :

Tests run: 0, Failures: 0, Errors: 0, Skipped: 0

...

...

Tomcat (OutputBuffer.java)
…

Automatically detect the rarest and most
difficult data races in your Java/C code, saving
on development effort with the most precise
race finder available. RV-Predict gives you:
• an automatic debugger for subtle Java/C

data races with no false positives
• seamless integration with unit tests, build

infrastructure, and continuous integration
• a maximal detection algorithm that finds

more races than any sound dynamic tool

Data race on field java.util.HashMap.$state:

{{{ Concurrent write in thread T83 (locks held: {Monitor@67298f15})

----> at org.apache.catalina.connector.OutputBuffer.clearEncoders(OutputBuffer.java:255)

...

Concurrent read in thread T61 (locks held: {})

----> at org.apache.catalina.connector.OutputBuffer.setConverter(OutputBuffer.java:604)

...

Conventional testing
approaches do not
detect the data-race

RV-Predict precisely detects
the data-race, and reports the
relevant stack-traces

…

…

…

http://dx.doi.org/10.1145/2594291.2594315

 What value does it return?
 Data race on shared var
 This one is easy to spot, but

data races can be evil

 Non-deterministic

 Rare

 Hard to reproduce

 Led to catastrophic failures

 Human life (Therac 25,
Northeastern blackout, …)

main

1. write(var,0)

2. fork(thread1)

3. fork(thread2)

8. join(thread1)

9. join(thread2)

return(2)

thread1

4. read(var,0)

5. write(var,1)

thread2

6. read(var,1)

7. write(var,2)

Code Event Trace

main

1. write(var,0)

2. fork(thread1)

3. fork(thread2)

8. join(thread1)

9. join(thread2)

return(1)

thread1

4. read(var,0)

6. write(var,1)

thread2

5. read(var,0)

7. write(var,1)

Code Event Trace

1. Instrument program to emit event trace when executed
2. Give every observed event an order variable
3. Encode event causal ordering and data race as constraints
4. Solve constraints with SMT solver

Code Event Trace

Model

Causal dependence as

mathematical formula 

A
n

al
yz

e

Is  satisfiable?

(we use Z3 solver)
If “yes” then data race

Code
main

1. write(var,0)

2. fork(thread1)

3. fork(thread2)

8. join(thread1)

9. join(thread2)

return(2)

thread1

4. read(var,0)

5. write(var,1)

thread2

6. read(var,1)

7. write(var,2)

Assume Expected Execution Trace

Encode causal dependence and data race as constraints:

Causal
dependence

Potential
data race

 = O1<O2<O3<O8<O9 /\ O4<O5 /\ O6<O7

/\ O2<O4 /\ O3<O6 /\ O5<O8 /\ O7<O9

/\ O4=O7 // only one out of 3 races

If  satisfiable then
data race is possible

(no false alarm)

Program
behaviors

Provably correct and
maximal space of

causally equivalent paths
predicted from one path

 Also synchronization, interrupts; see demo
 No false alarms: all predicted races are real
 Maximal: Impossible to precisely (without false

alarms) predict more races than RV-Predict
does from the same execution trace

[PLDI’14]
[RV’12]

 Go to https://runtimeverification.com/predict
to download RV-Predict (currently only Java 8
version available); javac and then execute the
Java programs under folder examples

 Most of the examples above are also discussed,
with detailed comments, at

https://runtimeverification.com/predict/docs/runningexamples
https://runtimeverification.com/blog/?p=58

https://runtimeverification.com/predict
https://runtimeverification.com/predict/docs/runningexamples
https://runtimeverification.com/blog/?p=58

Monitor Safety Requirements and Recover when Violations Detected

 RV-Monitor is a code generator
 Takes safety property specifications as input

 Generates efficient monitoring code library as output
▪ Provably correct: proof certificate can also be generated

 Specifications can be implicit (generic API
protocols) or explicit (application-specific)

 RV-Monitor specifications consist of
 Events: snapshots of system execution

 Properties: desired sequences of events

 Recovery: what to do when property violated

Safe door lock
Doors should always
open only if they were
unlocked in the past and
not locked since then; at
violation, close door.
…(hundreds of these)

Informal requirements

Formalize requirements
(by domain experts,
using various formalisms;
here an interval logic)

 d : always (Open(d) implies
not Lock since UnLock)

@violation : Close(d)

Formal requirements

// One such monitor instance

// in for each door d

State: one bit, b

b = UnLock || !Lock && b

if (Open && !b)

then send(Close)

Monitor for each d

Automatically
generated

Provably
correct

Event

Property
Recovery

 RV-AUTOSAR

 Monitor AUTOSAR compliance

 Formalized 20+ CAN interface properties

 RV-ECU

 ECU in charge of safety on CAN bus

 Runs LLVM

 All code generated automatically from
safety specifications; provably correct

 Built prototype using STM ECU board
STM3210C-EVAL
▪ Currently runs in an actual car (model omitted)

 Go to https://runtimeverification.com/ecu
and watch video

https://runtimeverification.com/ecu

 Runtime Verification, Inc., is a new startup
company licensed by the University of Illinois

 Offers solutions for reliable and safe software
 Technology based on runtime verification

 Scalable, rigorous, automatic, no false alarms

 Can also be done exhaustively: full verification

 Leaders in the field
 Business model

 General-purpose libraries and tools

 Custom tools and services to select customers

